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Abstract

Let H be the three-dimensional hyperbolic space and letG be the identity component of the
isometry group ofH . It is known that some aspects of the dynamics of a rigid body inH contrast
strongly with the Euclidean case, due to the lack of a subgroup of translations inG. We present the
subject in the context of homogeneous Riemannian geometry, finding the metrics onG naturally
associated with extended rigid bodies inH . We concentrate on the concept of dynamical center,
characterizing it in various ways. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let H be the three-dimensional hyperbolic space of (constant) curvature−1. A rigid
bodyin H is a measure space(A, m) of finite measureM, whereA is a bounded subset of
H and the inclusion is measurable (M is the total mass of the body). For example, a rigid
body consisting ofn particlespi and massesmi is given byA = {p1, . . . , pn}, m{pi} = mi .
Unless otherwise stated, we will consider onlyextendedrigid bodies, i.e., the support of the
measure is not contained in the image of a geodesic inH .

Let (A, m) be an extended rigid body inH . A motion of(A, m) is said to beforce-freeif
it is a critical point of the kinetic energy functional in the configuration space. LetG be the
identity component of the isometry group ofH and fix an orientation ofH . SinceG acts
simply transitively on positive orthonormal frames, it may be identified in a natural way
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with the configuration space ofA, and any smooth curveg(t) in G may be thought of as a
rigid motion ofA, i.e., a one-parameter familyg(t)A.

Zitterbarth [9] (see also [3–5,7,8]) studied thoroughly the dynamics of a rigid body
in simply connected three-dimensional manifolds of constant sectional curvatureκ. These
manifolds share with the Euclidean space the property of free movability of rigid bodies, the
only requirement of the foundations of classical mechanics. He proves stability of the “laws
of nature” with respect to perturbations of the curvature, in particular, when perturbing the
valueκ = 0. We are interested in the negative curvature cases and for the sake of simplicity
takeκ = −1. In this case, Zitterbarth defines the center of mass of a rigid body(A, m) as
the (unique) point where the convex function onH defined by

F(p) =
∫

A

sinh2(d(p, q)) dm(q) (1)

attains the minimum. He poses the equations of motion and obtains that even in the case
when the rigid body is a ball with rotational symmetric distribution of mass, under a free
motion, the center of mass need not move along a geodesic inH . This (perhaps surprising)
contrast with the Euclidean case is to be attributed to the lack of a subgroup of translations
in G.

In this note we present the subject in the context of homogeneous Riemannian geometry,
avoiding in general the use of coordinates. We concentrate on the center of mass, introducing
it in a more dynamical way, which is the approach of Nagy in [6] for the two-dimensional
hyperbolic case. This definition of center of mass (presented as dynamical center) has the
additional advantage of being susceptible of generalization to rigid bodies in symmetric
spaces of noncompact type (see Remark 2).

Definition 1. A rotation inH is a one-parameter group of isometries ofH fixing a point.
Three rotations are said to be independent if the corresponding Killing fields onH are
linearly independent. A pointp in H is said to be a dynamical center of the rigid bodyA

in H if there are three independent force-free rotations ofA aroundp.

Theorem 7, our main result, asserts that an extended rigid body inH has exactly one
dynamical center and characterizes it in various ways.

To illustrate the concept of dynamical center in nonEuclidean spaces, we recall the fol-
lowing from the two-dimensional situation: a point in the hyperbolic plane is said to be
a dynamical center of a rigid body if there is a force-free rotation of the body around it.
Given two pointsp1 andp2 in the hyperbolic plane, at distanced from each other, with
massesm1 andm2, the dynamical center is the pointp on the segment joiningp1 andp2 at
distance

d

2
+ 1

4
log

(
m1 + m2 e2d

m2 + m1 e2d

)

from p1 (by solving the first equation of Theorem 3 in [6] in this particular case), while the
corresponding number in the Euclidean plane ism2d/(m1 + m2).
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Remark 2. The dynamical center of a symmetric space of noncompact type N may be
defined as follows. A rigid body(A, m) in N is said to be extended if no one-parameter
group of isometries of N fixes every point of the support of m. Let G be the identity component
of the isometry group of N and let k be the dimension of the isotropy group of G at any point
of N. A pointp ∈ N is said to be a dynamical center of (A,m) if there are k independent
force-free rotations fixing p. As far as we know, fordimN ≥ 4, existence and uniqueness
of the dynamical center is an open problem.

1.1. Isometries of the hyperbolic space

Let H be the three-dimensional hyperbolic space of curvature−1 as before and letG be
the Lie group of orientation preserving isometries ofH . Let g ∈ G, g 6= id. We recall that
g is said to beelliptic if there is a geodesicγ in H such thatg ◦γ = γ andg is hyperbolicif
there exist a geodesicγ in H andt0 ∈ R such thatg(γ (t)) = γ (t + t0) and(dg)γ (t) = τ

t+t0
t

for all t (hereτ s
t denotes the parallel transport alongγ from t to s). In either caseγ is called

anaxisof g.
Let g be the Lie algebra ofG and letX ∈ g, X 6= 0. X is said to be elliptic (resp. hy-

perbolic) if exp(tX) is elliptic (resp. hyperbolic) for nearly allt . In this caset 7→ exp(tX) is
called a rotation (resp. a transvection) inG with axisγ (the common axis of all isometries
exp(tX)). By abuse of notation, an elliptic elementZ ∈ g is said to have unit speed if the
rotation t 7→ exp(tZ) has unit angular speed, or equivalently, if it has period 2π . Unless
otherwise specified, geodesics are supposed to be complete and have unit speed.

In general, computations onH will involve no particular model of this space. The
upper-half space model forH and the associated presentation ofg as sl(2, C) are used
almost exclusively to take advantage of the complex structure on the latter to relate in-
finitesimal transvections and rotations with the same axis.

1.2. Left invariant metrics induced on the isometry group

Any smooth curveg in G may be thought of as a rigid motion ofA, i.e., a one-parameter
family g(t)A. A (possibly not extended) rigid body(A, m) induces a left invariant semi-
Riemannian metric onG as follows: forX, Y ∈ Tg0G,

〈X, Y 〉 =
∫

A

〈X · q, Y · q〉 dm(q),

whereX · q = (d/dt)|0g(t)q for any curveg in G with g(0) = g0 andġ(0) = X.
Notice that in the Euclidean case one can study separately the rotational and translational

components of a force-free motion, and it suffices to consider metrics on SO(3) (see [1],
where also free motions of generalized rigid bodies are discussed).

Proposition 3. The induced metric on G is Riemannian if and only if the rigid body is
extended. In this case, a curveg(t) in G is a geodesic if and only if(thought of as a rigid
motion) is force-free.
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Proof. Suppose the rigid body(A, m) is not extended. If the support ofm is contained in a
geodesicγ , then〈X, X〉 = 0 holds for any elliptic elementX with axisγ . Conversely, if the
metric is not Riemannian, there existsX ∈ g, X 6= 0, with 0= 〈X, X〉 = ∫

A
‖X·q‖2 dm(q).

Sinceq 7→ ‖X · q‖2 is continuous and nonnegative, it must vanish on the support ofm.
Hence,X is elliptic and the support ofm is contained in its axis.

The second assertion follows from the fact that ifg(t) is a piecewise smooth curve inG,
then

1
2‖ġ(t)‖2 = 1

2

∫
A

‖ġ(t) · q‖2 dm(q) (2)

is the kinetic energy of the rigid motiong(t)A at the instantt . �

2. Characterizations of the dynamical center

Next we give a necessary condition for an inner product ong to be associated with a rigid
body inH of total massM.

Proposition 4. Let 〈, 〉 be an inner product ong associated with a rigid body in H of total
mass M. Then

〈Z, iZ〉 = 0 and ‖iZ‖2 = M + ‖Z‖2 (3)

for all unit speed ellipticZ ∈ g.

Givenq ∈ H , let g = kq + pq be the associated Cartan decomposition ofg (kq is the
Lie algebra of the isotropy group atq andpq = k⊥q with respect toB). We have also that
pq = ikq . If πq : G → H is defined byπq(g) = g · q, then(dπq)e : (pq, B) → TqH is
a linear isometry. All non-zero elements inkq (resp. inpq ) are elliptic (resp. hyperbolic).
Let Symm+(kq) be the set of all positive definite self-adjoint operators onkq with respect
to −B|kq×kq . Next we introduce a class of inner products ong which will be useful for our
purpose.

Definition 5.
(a) LetM be a positive number,q ∈ H and letT ∈ Symm+(kq). An inner product〈, 〉 on
g is said to be standard of type(q, T , M) if 〈X, Y 〉 = −B(T̃ X, Y ) for all X, Y , whereT̃
decomposes as̃T = T ⊕ T ′ with respect to the Cartan decompositiong = kq + pq and

T ′ = iT i − M id.

(b) Three positive numbers are said to satisfy the triangular condition if each one is less
than or equal to the sum of the other two.

We will show later that the type of a standard inner product ong is uniquely determined.
Next, the metrics onG associated with extended rigid bodies inH are characterized (cf.
Lemma 5 (iii) in [9]).
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Theorem 6. An inner product ong is induced by an extended rigid body of total mass M
if and only if it is standard of type(p, T , M) for somep ∈ H, T ∈ Symm+(kp), and the
eigenvalues of T satisfy the triangular condition.

Theorem 7. Let A be an extended rigid body in H of total mass M and let G be endowed
with the associated Riemannian metric. Then A has exactly one dynamical center p, which
is characterized by any of the following equivalent assertions:
(a) the inner product ong is standard of type(p, T , M) for someT ∈ Symm+(kp) with
eigenvalues satisfying the triangular condition;

(b) p belongs to the axis of any free rotation of the body;
(c) p belongs to the axis of any free transvection of the body;
(d) there exist three geodesics of H meeting orthogonally at p, which are axes of free
rotations and free transvections of the body;

(e) kp ⊥ pp;
(f) the isotropy group at p is totally geodesic in G;
(g) the volume of the isotropy group at p is less than the volume of the isotropy group at
any other point;

(h) p is the center of mass of A, i.e., the convex functionF : H → R defined in(1) attains
the minimum at p.

Corollary 8. Given an extended rigid body A in H with dynamical center p, there exists a
rigid particle system consisting of six points with equal masses, at the vertices of a hyperbolic
octahedron with equal faces, centered at p, which has the same force-free motions as A.

Given a dynamical system, in our case the one associated with the force-free motions of
an extended rigid body in the hyperbolic space (which turns out to be the geodesic flow ofG

endowed with some left invariant metric), a natural question arises whether it has periodic
orbits. The existence of a dynamical center guarantees a positive answer.

Corollary 9. The dynamical system associated with the force-free motions of any extended
rigid body inH has at least three periodic orbits.

3. Proofs of the results

We consider for the hyperbolic space the modelH = {(x, y, z) ∈ R3|z > 0} with the
metric ds2 = (dx2 +dy2 +dz2)/z2. Let∂H = R2 ∪{∞} be the asymptotic border.G may
be identified with the group

PSL(2, C) = {A ∈ M(2, C)|det(A) = 1}
{±id}

as follows:G acts on∂H ≈ C ∪ {∞} by Möbius transformations, which extend uniquely
to orientation preserving isometries ofH ([2]).
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Consider on the Lie algebrag = {X ∈ M(2, C)|tr(X) = 0} of G the bilinear form
B defined byB(X, Y ) = 2Re tr(XY), which is a positive multiple of the Killing form.B
satisfiesB(iX, iY ) = −B(X, Y ) for all X, Y (here i= √−1). If Z is elliptic, then iZ is
hyperbolic and has the same axis asZ. It has unit speed if and only ifB(Z, Z) = −1.
If X is hyperbolic with axisγ , then the transvectiont 7→ exp(tX) has unit speed (i.e.,
t 7→ exp(tX)γ (0) has unit speed) if and only ifB(X, X) = 1. In this case, by abuse of
notation, we say thatX has unit speed (see also the comment before Lemma 10).

We will need the notion of positively oriented (or simply positive) axis of an elliptic or
hyperbolic element ofg. An axisγ of an elliptic (resp. hyperbolic) elementY ∈ g is said
to bepositiveif {u, (d/dt)|0(d exp(tY))γ (0)u, γ̇ (0)} is a positively oriented basis ofTγ (0)H

for each 0 6= u ⊥ γ̇ (0) (resp. if 〈(d/dt)|0 exp(tY)γ (0), γ̇ (0)〉 > 0). Givenp ∈ H and
Z ∈ kp, thent 7→ exp(t iZ) · p is a positive axis ofZ. Moreover, ifZ is elliptic, thenγ is a
positive axis ofZ if and only if it is a positive axis of iZ.

Since each unit speed elliptic (resp. hyperbolic) elementY ∈ g is conjugate inG to

Z0 = 1

2

(
i 0
0 −i

)

(resp.X0 = iZ0), any assertion concerning elliptic or hyperbolic elements may be checked,
without loss of generality, only forZ0 andX0 (which have a common positive axist 7→
(0, 0, et )).

Lemma 10. Let σ : [0, d] → H be a unit speed geodesic segment and let{u, v, σ̇ } be a
parallel positively oriented orthonormal frame alongσ . Let γw denote the geodesic with
initial velocity w. Forj = 0, d, let Zj be the unit speed elliptic element ofg with positive
axis γv(j), and letXj be the unit speed hyperbolic element ofg with positive axisγu(j).
Then

Zd = −(sinhd)X0 + (coshd)Z0, Xd = (coshd)X0 − (sinhd)Z0.

Proof. For j = 0, d, let Z̃j , X̃j be the associated Killing fields.̃Z0 ◦ σ andX̃0 ◦ σ are
Jacobi fields alongσ . The Jacobi equation is simple since the curvature tensor is parallel.
Computing the initial conditions using the fact thatZj andXj have unit speed, one obtains

Z̃0(σ (t)) = (sinht)u(t), X̃0(σ (t)) = (cosht)u(t).

Reversing the direction ofσ we have analogously

Z̃d(σ (d − t)) = − sinh(t)u(d − t), X̃0(σ (d − t)) = cosh(t)u(d − t).

Hence,

Z̃d(σ (t)) = − sinh(d − t)u(t) = (−(sinhd)X̃0 + (coshd)Z̃0)(σ (t)),

X̃d(σ (t)) = cosh(d − t)u(t) = ((coshd)X̃0 − (sinhd)Z̃0)(σ (t)).

SinceZ̃d and−(sinhd)X̃0 + (coshd)Z̃0 are Killing fields which coincide alongσ , they
differ in an elliptic field with axisσ , that must be zero since the one-parameter groups
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of isometries associated with the fields clearly preserve the totally geodesic submanifold
containingσ and orthogonal tov. The same happens forX̃d and(coshd)X̃0 − (sinhd)Z̃0

and the lemma follows. �

Lemma 11. The type of a standard inner product ong is uniquely determined.

Proof. We mention first that it is easy to show that such a bilinear form is actually an inner
product ong (notice thatB|pp×pp > 0). Let 〈, 〉 be a standard inner product ong of type
(p, T , M) and also of type(p′, T ′, M ′) (in particular〈kp, pp〉 = 〈kp′ , pp′ 〉 = 0). Suppose
p′ is at distanced > 0 from p and letσ be the geodesic segment joiningp with p′. If
Zj , Xj are as in the previous lemma (j = 0, d), we have〈Z0, X0〉 = 0 and also

0 = 〈Zd, Xd〉 = − sinh(d) cosh(d)(‖Z0‖2 + ‖X0‖2),

which is a contradiction. Thenp′ = p. Now T ′ = T sinceB|kp×kp is non degenerate and
thus obviouslyM ′ = M. �

Proof of Proposition 4. Let Z be a unit speed elliptic element ofg, let γ be a positive
axis of bothZ andX := iZ, and letZ̃ andX̃ be the associated Killing fields. Suppose
the rigid body is(A, m). For eachq ∈ A, let γ (tq) be the closest point toq on the axis,
and letσq : [0, dq ] → H be the geodesic segment joiningγ (tq) to q. Let {u, v, σ̇q} be a
parallel positively oriented orthonormal frame alongσq such thatv(0) = γ̇ (tq). We have
thatZ̃(q) = sinh(dq)u(dq) andX̃(q) = cosh(dq)v(dq). Therefore,

〈Z, X〉 =
∫

A

〈Z · q, X · q〉 dm(q) = 0,

‖X‖2 =
∫

A

cosh2(dq) dm(q) =
∫

A

dm +
∫

A

sinh2(dq) dm(q) = M + ‖Z‖2. �

Notation. LetSM be the set of all standard inner products ong of type(p, T , M) for some
p, T , and letAM be the set of inner products ong such that (3) is satisfied for all unit speed
elliptic Z ∈ g.

Given a real vector spaceV , we consider on the set of inner products onV the topology
relative toV ∗ ⊗V ∗ (in particular, we have uniform convergence on bounded sets ofV ×V ).
We consider onAM the relative topology, and onSM the topology induced by the bijection
given in the following lemma.

Lemma 12. Let o = (0, 0, 1) ∈ H and let K be the isotropy subgroup of G at o. Let
σ : H ≈ G/K → G be a continuous section. Then the mapF : H × Symm+(ko) → SM

defined by

F(p, T ) = −B(Ad(σ (p))T̃ Ad(σ (p)−1)·, ·)

is a bijection (hereT̃ is obtained from T as inDefinition 5 for the Cartan decomposition
g = ko + po).
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Proof. Since Ad(g) preserves Cartan decompositions and the Killing form, and commutes
with multiplication by i, we have that

S := Ad(σ (p))T Ad(σ (p)−1)|kp
is self-adjoint with respect to−B|kp×kp and F(p, T ) = −B(S̃·, ·). HenceF(p, T ) is
standard of type(p, S, M). Now,F is one-to-one by uniqueness of the type and it is easily
seen to be onto. �

Lemma 13. AM is contained in a real vector space of dimension9.

Proof. Let p be any point inH and {U1, U2, U3} be an orthonormal basis ofkp (with
respect to−B|kp×kp ) such that{u, v, σ̇ } as in Lemma 10 is positively oriented, where
u(0) = (dπp)e(iU1), v(0) = (dπp)e(iU2) andσ(t) = exp(t iU3) ·p. Letd > 0,Zd be as in
Lemma 10 and denoteZ = Zd . By that lemma we haveZ = −(sinhd)iU1 + (coshd)U2.
Now let 〈, 〉 ∈ AM . We have

0 = 〈Z, iZ〉 = sinhd coshd(〈U1, U2〉 − 〈iU1, iU2〉).
In a similar way we obtain〈iUj , iUk〉 = 〈Uj , Uk〉 for all j 6= k. On the other hand, an
analogous computation using‖iZ‖2 = M +‖Z‖2 yields that〈iUj , Uk〉 = 〈Uj , iUk〉 for all
j 6= k. Therefore, the matrix of〈, 〉 in the basis{U1, U2, U3, iU1, iU2, iU3} is determined
by the nine coefficients corresponding to‖Uj‖2, 〈Uj , Uk〉 and〈Uj , iUk〉 with j < k. �

Lemma 14. SM = AM .

Proof. First we see thatSM ⊂ AM . Let 〈, 〉 be a standard inner product ong of type
(p, T , M) and letZ ∈ g elliptic with B(Z, Z) = −1. Let γ be a positive axis ofZ,
let γ (t0) be the closest point top on the axis, and letσ : [0, d] → M be the geodesic
segment joiningp to γ (t0). Let {u, v, σ̇ } be a parallel positively oriented orthonormal
frame alongσ such thatv(d) = γ̇ (t0) and defineZj , Xj as in Lemma 10. By this lemma,
Z = Zd = −(sinhd)X0 + (coshd)Z0 and hence iZ = −(sinhd)iX0 + (coshd)iZ0. Now
〈X0, Z0〉 = 〈iX0, iZ0〉 = 0 sincepp ⊥ kp. Next we compute

〈X0, iZ0〉 = −B(T̃ X0, iZ0) = −B(−MX0 + iT iX0, iZ0) = MB(X0, iZ0)

−B(iT iX0, iZ0) = B(T iX0, Z0) = B(TZ0, iX0) = −〈Z0, iX0〉.
Hence〈Z, iZ〉 = − sinhd coshd(〈X0, iZ0〉 + 〈Z0, iX0〉) = 0. On the other hand,

M + ‖Z‖2 = M + sinh2 d‖X0‖2 + cosh2 d‖Z0‖2 = M + sinh2 d(M + ‖ − iX0‖2)

+ cosh2 d‖Z0‖2 = sinh2 d‖iX0‖2 + cosh2 d(M + ‖Z0‖2) = sinh2 d‖iX0‖2

+ cosh2 d‖iZ0‖2 = ‖iZ‖2.

Therefore,SM ⊂ AM . Let ι : SM → AM denote the inclusion.
Let us prove now thatSM is closed inAM . Suppose that(pn, Tn) is a sequence in

H ×Symm+(ko) such thatbn = ι◦F(pn, Tn) converges to an inner productb = −B(S·, ·)
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ong. If {pn} is bounded, there exists a subsequenceqj = pnj
converging to somep ∈ H .

If we denoteUj = Ad(σ (qj ))T̃nj
Ad(σ (qj )

−1), we have that−B(Uj ·, ·) converges to
−B(S·, ·). Hence limj→∞Uj = S and

T̃ := lim
j→∞

T̃nj
= lim

j→∞
Ad(σ (qj )

−1)Uj Ad(σ (qj )) = Ad(σ (p)−1)S Ad(σ (p)).

Thus,b(·, ·) = −B(Ad(σ (p))T̃ Ad(σ (p)−1)·, ·) = ι◦F(p, T̃ |ko ) is inSM . Now we see that
pn must be bounded. If not, there exists a subsequenceqj = pnj

converging to some point in
∂H , which we may suppose without loss of generality to be(0, 0, 0). Henceqj = (zj , tj ),
with zj ∈ C andtj > 0, both converging to zero. Let

Z =
(

0 −1

1 0

)
∈ ko, X =

(
0 1

1 0

)
∈ po,

Y =
(

0 0

1 0

)
∈ g, gj =

[√
tj zj /

√
tj

0 1/
√

tj

]
∈ G.

Then gj (0, 0, 1) = qj , Zj := tj Ad(gj )Z ∈ kqj
and Xj := tj Ad(gj )X ∈ pqj

. Thus
bnj

(Zj , Xj ) = 0. Now a straightforward computation yields

lim
j→∞

Zj = lim
j→∞

Xj = Y.

Hence‖Zj − Xj‖j converges to zero forj → ∞ (‖.‖j denotes the norm associated with
bnj

). On the other hand, by Pythagoras theorem we have

‖Zj − Xj‖2
j = ‖Zj‖2

j + ‖Xj‖2
j → 2‖Y‖2 > 0 for j → ∞.

Thus, ifpn is not bounded,bn cannot converge to any inner product ong.
To complete the proof we note thatSM has dimension 9. Hence by invariance of domain

(the inclusionι : SM → AM is easily seen to be continuous), it is an open set inAM , since
the latter is contained in a nine-dimensional real vector space by Lemma 13. Moreover,
AM is connected (the segment joining two elements inAM is contained inAM ). Since we
already know thatSM is closed inAM , we have thenSM = AM . �

Proof of Theorem 6. By Proposition 4 and Lemma 14, an inner product ong associated
with a rigid body inH of massM is standard of type(p, T , M) for somep ∈ H and
T ∈ Symm+(kp). Now we show that the eigenvalues ofT satisfy the triangular condition.
Let {Z1, Z2, Z3} be an orthonormal (with respect to−B) basis of eigenvectors ofT with
eigenvaluesλ1, λ2, λ3. We have

λj = −B(TZj , Zj ) = ‖Zj‖2 =
∫

A

‖Zjq‖2 dm(q).

Let q ∈ H , γj be an axis ofZj and denotedj (q) = d(q, γj ) and dp(q) = d(q, p).
Hence‖Zjq‖ = sinh(dj (q)). For eachj = 1, 2, 3 consider the hyperbolic triangle with
vertices atp, q and the closest point toq on γj , and letαj be the angle atp. Now
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by Theorem 7.11.2 (ii) in [2] we have that sinh(dj ) = sinh(dp) sin(αj ). On the other
hand, an easy linear algebra computation onTpH yields sin2(α3) ≤ sin2(α1) + sin2(α2).
Therefore

λ1 + λ2 =
∫

A

sinh2(d1) + sinh2(d2) dm =
∫

A

sinh2 dp(sin2(α1) + sin2(α2)) dm

≥
∫

A

sinh2(dp) sin2(α3) dm = λ3.

Hence any eigenvalue ofT is less than or equal to the sum of the other two.
Conversely, suppose that〈, 〉 is a standard inner product ong of type (p, T , M) and

let {Z1, Z2, Z3} be an orthonormal (with respect to−B) basis of eigenvectors ofT , with
eigenvaluesλ1, λ2, λ3 satisfying the hypothesis. We will show that there exist positive
numbersdj (j = 1, 2, 3) such that〈, 〉 is the inner product ong associated with the rigid
particle system

{exp(±dj iZj ) · p|j = 1, 2, 3}

consisting of six points with equal masses1
6M. Indeed, let〈, 〉0 be the inner product ong

associated with this rigid body. Letπ : G → H, π(g) = g · p. Suppose that{j, k, `} =
{1, 2, 3} and{Zj , Zk, Z`} is positively oriented (i.e., its image under(dπ)i is positively
oriented). Letγu(s) = π exp(siZu) and denote bỹXu the parallel transport of(dπ)(iZu)

alongγk. We obtain

Zj · γj (s) = 0, (iZj ) · γj (s) = γ̇j (s), Zj .γk(s) = sinh(s)X̃`(s),

(iZj ) · γk(s) = cosh(s)X̃j (s). (4)

We prove only the third assertion, the other ones follow from similar arguments.Zj ·γk(s) =
(d/dt)|0 exp(tZj ) · γk(s) = J (s), a Jacobi field alongγk with J (0) = 0. HenceJ (s) =
(sinhs)τ s

0J ′(0). Next we compute

J ′(0) = D

ds

∣∣∣∣
0
J (s) = D

dt

∣∣∣∣
0

d

ds

∣∣∣∣
0

exp(tZj )γk(s)

= D

dt

∣∣∣∣
0
(dπ)(dLexp(tZj ))

(
d

ds

∣∣∣∣
0

exp(siZk)

)

= D

dt

∣∣∣∣
0
(dπ)Ad(exp(tZj ))(iZk) = (dπ)(i[Zj , Zk]) = (dπ)(iZ`).

Hence the third assertion in (4) is true. Denotep±u = γu(±du) and suppose that〈, 〉0 =
−B(T0·, ·). By (4) we have

−B(T0Zj , Zj ) = ‖Zj‖2
0 =

∑
1≤|u|≤3

(‖Zj · pu‖2 1
6M) = 1

6M

3∑
u=1

2‖Zj · pu‖2

= 1
3M(‖Zj · pk‖2 + ‖Zj · p`‖2) = 1

3M(sinh2(dk) + sinh2(d`)).
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Now if the eigenvalues ofT satisfy the hypothesis, then the equation


λ1

λ2

λ3


 = M

6




0 1 1

1 0 1

1 1 0






sinh2(d1)

sinh2(d2)

sinh2(d3)




admits a unique solution(d1, d2, d3), with du > 0. Using the other identities of (4) one
completes the proof that〈, 〉0 = 〈, 〉. �

Proposition 15. Let G carry a left invariant metric induced by a standard inner product
ong of type(p, T , M).
(a)The isotropy group at p is totally geodesic in G.
(b) If U ∈ g, thent 7→ exp(tU) is a geodesic if and only if U is a complex multiple of an
eigenvector of T inkp.

Proof. Let K denote the isotropy group atp andX, Y, Z be left invariant vector fields on
G such thatX, Y ∈ kp andZ ∈ pp. By the formula for the Levi–Civita connection applied
to left invariant vector fields, we have

2〈∇XY, Z〉 = −〈[Y, Z], X〉 − 〈[X, Z], Y 〉 − 〈[Y, X], Z〉
= B(T̃ [Y, Z], X) + B(T̃ [X, Z], Y ) + B(T̃ [Y, X], Z) = 0,

since [kp, pp] ⊂ pp andkp ⊥ pp. Hence, the second fundamental form ofK vanishes at
the identity. By invariance of the metric,K is totally geodesic inG. Now we prove (b). By
the same formula for the Levi–Civita connection,t 7→ exp(tU) is a geodesic if and only if

0 = 〈U, [U, Y ]〉 = −B(T̃ U, [U, Y ]) = B([U, T̃ U ], Y )

for all Y ∈ g. ThenT̃ U = αU for someα ∈ C, sinceB is non degenerate and a straight-
forward computation yields that two elements ofg commute if and only if they are linearly
dependent overC. Now, if α = a + ib andU = Z + iZ′ with Z, Z′ ∈ kp, we obtain by
definition ofT̃ that

TZ = aZ− bZ′, TZ′ = −bZ− (M + a)Z′. (5)

SupposeZ andZ′ span a two-dimensional real subspaceW . An easy computation yields
that the matrix ofT |W in the basis{Z, Z′} has one eigenvalue which is not positive. This
contradicts the fact thatT |W is positive definite. HenceZ, Z′ are linearly dependent over
the real numbers. IfZ′ = cZ, thenU = (1+ ic)Z andTZ = (a − bc)Z by (5). If Z = cZ′,
one obtains in a similar way thatU is a complex multiple of an eigenvector ofT . �

Lemma 16. Let p ∈ H , let Z ∈ kp, Y ∈ pp be unit speed elements ofg and letd > 0.
ThenAd(exp dY )Z is a unit speed elliptic element ofg with positive axisγ , whereγ̇ (0) =
τd

0 (dπp)(iZ) andτ is the parallel transport along the geodesicσ(t) = exp(tY) · p.

Proof. γ0(s) = exp(siZ) · p is a positive axis ofZ and satisfieṡγ0(0) = (dπp)(iZ). Let
g(t) = exp(dY ) exp(tZ) exp(−dY ). Clearly (d/dt)|0g(t) = Ad(exp dY )Z is an elliptic



M. Salvai / Journal of Geometry and Physics 36 (2000) 126–139 137

element with positive axisγ (s) = exp(dY )γ0(s) with initial velocity γ̇ (0) = τd
0 γ̇0(0),

since(dLexp dY ) realizes the parallel transport alongσ (notice that the parallel transport
preserves orientation). �

Lemma 17. Let 〈, 〉 be an inner product ong of type(p, T , M), let {Z1, Z2, Z3} be an
orthonormal basis ofkp (with respect to−B|kp×kp ). Let d > 0 and letg = exp(d iZ3).
Let E and D be the3× 3 matrices with coefficients〈Zk, Zl〉 and〈Ad(g)(Zk), Ad(g)(Zl)〉,
respectively. Then

det(D) ≥ cosh4 d det(E), tr(D) ≥ c1 + c2 sinh2 d,

for some positive constantsc1 andc2.

Proof. Clearlyq = g(p) is at distanced from p andσ(t) = exp(t iZ3) · p for 0 ≤ t ≤ d

is the geodesic segment joiningp with q. Let {u1, u2, u3 = σ̇ } be the parallel orthonormal
frame alongσ satisfying(dπ)(iZk) = uk(0) (k = 1, 2). We may suppose that it is positively
oriented. Fork = 1, 2, 3 andj = 0, d, let Zk

j be the unit speed elliptic element ofg with

positive axisγuk(j) (hence iZk
j is hyperbolic and has the same positive axis). We will write

Zk
0 = Zk.
ClearlyZ3

d = Z3. By Lemma 10, we have

Z2
d = −(sinhd)iZ1 + (coshd)Z2

and analogouslyZ1
d = (sinhd)iZ2 + (coshd)Z1. Now Zk

d = Ad(g)Zk for k = 1, 2, 3 by
Lemma 16. Sincekp ⊥ pp, ‖iZk‖2 = M + ‖Zk‖2 for all k, 〈iZk, iZ`〉 = 〈Zk, Z`〉 and
〈iZk, Z`〉 = 〈Zk, iZ`〉 if k 6= ` (see the proof of Lemma 13), we have that the matrixD

may be written asA + (sinh2 d)C, where

A =




c2E11 c2E12 cE13

c2E12 c2E22 cE23

cE13 cE23 E33


 , C =




M + E22 −E12 0

−E12 M + E11 0

0 0 0




(herec = coshd). Now,

det(A + (sinh2 d)C) ≥ detA,

sinceA andC are symmetric,A > 0 andC ≥ 0. On the other hand, clearly, detA = c4 detE
and the first assertion follows. A straightforward computation yields the second one.�

Proof of Theorem 7. Suppose the inner product associated with the rigid body is of type
(p, T , M) and let{Z1, Z2, Z3} be an orthonormal basis ofkp (with respect to−B) con-
sisting of eigenvectors ofT . Thenp is a dynamical center of the rigid body since by
Proposition 15,t 7→ exp(tZj ) are three independent free rotations aroundp. Moreover,
t 7→ exp(t iZj ) ·p (which meet orthogonally atp) are axes of the three independent free ro-
tations (resp. transvections) generated byZj (resp. iZj ). On the other hand, lett 7→ exp(tY)

be a free rotation (resp. transvection). By Proposition 15,Y = αZ for some eigenvector
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Z of T in kp and someα ∈ C. Henceα ∈ R (resp.α ∈ iR), since in each complex line
of g all elliptic (resp. hyperbolic) elements are real multiples of a given one. Moreover,
axes of three independent rotations may intersect at most at one point, which must bep by
the preceding argument. This proves the first assertion of the theorem and that (a)–(d) are
equivalent. The equivalence with (e) follows from the proof of Lemma 11.

In the following letq 6= p and letKp andKq denote the isotropy groups atp andq,
respectively.

Kp has been shown to be totally geodesic in Proposition 15(a). Now,Kq with the metric
induced fromG is isomorphic to SO(3) with a left invariant metric. By well-known facts on
the dynamics of a rigid body in Euclidean space ([1]), there are three independent rotations
in Kq which are geodesics in the induced metric. Two of them do not fixp, hence they are
not geodesics inG by Proposition 15(b). Consequently,Kq is not totally geodesic.

Endowed with the metric induced fromG, Kq is isometric toKp endowed with the left
invariant metric〈, 〉q defined at the identity by

〈Z, Z′〉q = 〈Ad(g)Z, Ad(g)Z′〉 (6)

for all Z, Z′ ∈ kp (here〈, 〉 is the metric induced onKp from G). Hence vol(Kq) =
vol(Kp, 〈, 〉q). Choose the basis in Lemma 17 such thatg = exp(d iZ3) satisfiesg(p) = q.
Sinceq 6= p, we have then by Lemma 17 that

vol(Kq)

vol(Kp)
=

√
detD√
detE

= cosh2 d > 0,

and the equivalence with (g) is proved.
DenoteUk = Ad(g)Zk(k = 1, 2, 3). By the arguments in the first part of the proof of

Theorem 6, withp = q, q = q ′ andZk = Uk, we obtain

‖Uk‖2 =
∫

A

sinh2(d(q, q ′)) sin2(αk(q
′)) dm(q ′).

Now, an easy linear algebra computation onTpH yields sin2 α1 + sin2 α2 + sin2 α3 = 2.
Hence, Lemma 17 implies that

2F(q) = 2
∫

A

sinh2(d(q, q ′)) dm(q ′) = ‖U1‖2 + ‖U2‖2 + ‖U3‖2

= tr(D) = c1 + c2 sinh2 d

for some positive constantsc1 andc2. Consequently,F attains the minimum atp. �

Remark. The proof shows that F(q) is the sum of the kinetic energies of three unit speed
rotations around axes meeting orthogonally at q.

Proof of Corollary 8. It is an immediate consequence of Theorem 7(a) and the last part of
the proof of Theorem 6. �

Proof of Corollary 9. It is an immediate consequence of Theorem 7(d). �
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